Modular Forms on Noncongruence Subgroups and Atkin–Swinnerton-Dyer Relations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular Forms on Noncongruence Subgroups and Atkin-Swinnerton-Dyer Relations

This is a joint project with Liqun Fang Ben Linowitz Andrew Rupinski Helena Verrill We give new examples of modular forms on noncongruence subgroups whose l-adic representations are modular and whose expansion coefficients satisfy Atkin-Swinnerton-Dyer congruences.

متن کامل

Modular Forms for Noncongruence Subgroups

The study of modular forms for congruence subgroups of SL2(Z) has been one of the central topics in number theory for over one century. It has broad applications and impact to many branches of mathematics. Langlands’ program is a vast generalization of this subject from representation-theoretic point of view. The most recent highlight is the proof of the Taniyama-Shimura-Weil modularity conject...

متن کامل

Experimental finding of modular forms for noncongruence subgroups

In this paper we will use experimental and computational methods to find modular forms for non-congruence subgroups, and the modular forms for congruence subgroups that they are associated with via the Atkin–Swinnerton-Dyer correspondence. We also prove a generalization of a criterion due to Ligozat for an eta-quotient to be a modular function.

متن کامل

The Arithmetic Subgroups and Their Modular Forms

Arithmetic subgroups are finite index subgroups of the modular group. Classically, congruence arithmetic subgroups, which can be described by congruence relations, are playing important roles in group theory and modular forms. In reality, the majority of arithmetic subgroups are noncongruence. These groups as well as their modular forms are central players of this survey article. Differences be...

متن کامل

Finite Index Subgroups of the Modular Group and Their Modular Forms

Classically, congruence subgroups of the modular group, which can be described by congruence relations, play important roles in group theory and modular forms. In reality, the majority of finite index subgroups of the modular group are noncongruence. These groups as well as their modular forms are central players of this survey article. Differences between congruence and noncongruence subgroups...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Experimental Mathematics

سال: 2010

ISSN: 1058-6458,1944-950X

DOI: 10.1080/10586458.2010.10129064